- Reaction score
- 1,734
This breakthrough method optimizes complex computations like never before.
In new research, physicists uses principles from quantum mechanics to build a new model of the abstract concept of pi. Or, more accurately, they built a new model that happens to include a great new representation of pi. But what does that mean, and why do we need different representations of pi?
Because quantum mechanics looks at the tiniest particles, one at a time, even simple questions can have complex answers that require massive computing power. Rendering high-tech video games and movies like Avatar can take days or more, and that’s still not at the level of reality. In this new paper, published in the peer-reviewed journal Physical Review Letters, physicists Arnab Priya Saha and Aninda Sinha describe their new version of a quantum model that reduces complexity but maintains accuracy.
This is called optimization. Think of the way early internet video buffered in chunks of similar colors, or how classic animators painted static bodies with individual moving parts on top. Heck, think of how people cut the corners of squared-off walking paths until they make a dirt-path shortcut. We’re surrounded by optimization and optimizing behaviors.
As detailed in their paper, Saha and Sinha combined two existing ideas from math and science: the Feynman diagram of particle scattering and the Euler beta function for scattering in string theory. What results is a series—something represented in math by the Greek letter Σ surrounded by parameters.
In new research, physicists uses principles from quantum mechanics to build a new model of the abstract concept of pi. Or, more accurately, they built a new model that happens to include a great new representation of pi. But what does that mean, and why do we need different representations of pi?
Because quantum mechanics looks at the tiniest particles, one at a time, even simple questions can have complex answers that require massive computing power. Rendering high-tech video games and movies like Avatar can take days or more, and that’s still not at the level of reality. In this new paper, published in the peer-reviewed journal Physical Review Letters, physicists Arnab Priya Saha and Aninda Sinha describe their new version of a quantum model that reduces complexity but maintains accuracy.
This is called optimization. Think of the way early internet video buffered in chunks of similar colors, or how classic animators painted static bodies with individual moving parts on top. Heck, think of how people cut the corners of squared-off walking paths until they make a dirt-path shortcut. We’re surrounded by optimization and optimizing behaviors.
As detailed in their paper, Saha and Sinha combined two existing ideas from math and science: the Feynman diagram of particle scattering and the Euler beta function for scattering in string theory. What results is a series—something represented in math by the Greek letter Σ surrounded by parameters.
A New Formula for Pi Is Here. And It’s Pushing Scientific Boundaries.
This breakthrough method optimizes complex computations like never before.
www.popularmechanics.com