Sci/Tech Fire Acts Strangely in Microgravity. Astronauts Have Lit More Than 1,500 Fires on the Space Station to Figure Out Why

The Helper

Necromancy Power over 9000
Staff member
Reaction score
1,688
Ever since childhood, we were all told to never play with fire. Despite it being relevant to our everyday lives, to include heating our homes and water, cooking our food, producing electricity, and more, fire is extremely dangerous. We were all indoctrinated more with how to put out fires instead of how to start one. We’ve all been told about its destructive properties if mishandled, and that fire needs to be controlled. One of the perks of adulthood, and especially being a scientist, is you get paid to play with fire. Despite fire’s complexities, there’s still a lot we don’t know about its behavior. With more and more of humanity traveling to space and living in microgravity, it’s important to learn about how fire behaves in this unique environment to better prepare ourselves for worst case scenarios. But what if we could also control fire so it’s not as dangerous and less destructive to the environment back here on Earth?

To gain a deeper understanding of combustion phenomena, a team of investigators from academia, NASA’s Glenn Research Center and the agency’s Biological and Physical Sciences Division, and other organizations recently completed a series of investigations on the International Space Station (ISS). The in-orbit testing for the Advanced Combustion via Microgravity Experiments, or ACME, project began in 2017 and included six successful investigations of non-premixed flames of gaseous fuel.

Non-premixed flames are those where the fuel and the oxidizer remain separate before reaction, or ignition, like a candle flame. Premixed flames occur in many of the everyday use scenarios mentioned above, where the fuel and oxidizer are mixed prior to reaction.

“A microgravity environment enables researchers to explore flame behavior without the influence of gravity, so they can investigate the underlying physics behind flame structure and behavior,” said Dennis Stocker, ACME Project Scientist at NASA Glenn. “That knowledge can help designers and engineers here on Earth develop furnaces, power plants, boilers, and other combustion systems that are more efficient, less polluting and safer.”

 
General chit-chat
Help Users
  • No one is chatting at the moment.

      The Helper Discord

      Members online

      Affiliates

      Hive Workshop NUON Dome World Editor Tutorials

      Network Sponsors

      Apex Steel Pipe - Buys and sells Steel Pipe.
      Top