Health Maintaining proper oxygen supply in tumors could be key factor to stop progression of cancer

tom_mai78101

The Helper Connoisseur / Ex-MineCraft Host
Staff member
Reaction score
1,793
The lack of oxygen in tumor cells changes the cells’ gene expression, thereby contributing to the growth of cancer. This is the main conclusion of a research project led by professor Diether Lambrechts and Dr. Bernard Thienpont (VIB-KU Leuven), which was published in the renowned scientific journal Nature. The findings are far-reaching, as the study also proved that maintaining a proper oxygen supply in tumors inhibits these so-called ‘epigenetic aberrations’. The paper’s insights could eventually lead to new anti-cancer drugs that target blood vessels or the epigenetic aberrations.

Cancer onset is generally well-understood: due to chance or carcinogenic factors, a single cell’s DNA mutates, followed by the rapid expansion of the abnormal cell. These genetic mutations disturb normal cell function, but are beneficial for the growth and survival of cancer cells. But apart from these genetic changes, tumors cells also differ epigenetically, which has to do with how genes are expressed rather than the genes themselves.

Although epigenetic changes don’t affect the genetic code, they can strongly disturb gene function in a similar way, to the benefit of cancer cells. But until now, the origins of these epigenetic changes mostly remained a mystery. Scientists from the lab of professor Lambrechts investigated one frequent epigenetic alteration: hypermethylation, or the excessive addition of methyl groups to DNA. Hypermethylation silences the expression of tumor suppressing genes, thereby enabling the aberrant behavior of cells and the excessive growth of tumors.

Diether Lambrechts (VIB-KU Leuven): “Our study shows that these epigenetic alterations are caused by the environment of the tumor, and more specifically by oxygen shortage – which we call ‘hypoxia’. Oxygen is required by the enzymes that normally remove the methyl groups from the DNA. When there is oxygen shortage, too much methylation is retained, causing hypermethylation. Even more, hypoxia explains up to half of the hypermethylation in tumors. While we dedicated much of our efforts to breast tumors, we also demonstrated that this mechanism has a similarly broad impact in bladder, colorectal, head and neck, kidney, lung and uterine tumors.”

Read more here. (Health Medicine Network)
 
General chit-chat
Help Users

      The Helper Discord

      Staff online

      Members online

      Affiliates

      Hive Workshop NUON Dome World Editor Tutorials

      Network Sponsors

      Apex Steel Pipe - Buys and sells Steel Pipe.
      Top