- Reaction score
- 1,724
'Quantum Hall-like effect' found in a bulk material without an applied magnetic field
A team of scientists from Princeton University has found that one of the most intriguing phenomena in condensed-matter physics -- known as the quantum Hall effect -- can occur in nature in a way that no one has ever before seen.
Writing in the April 24 issue of Nature, the scientists report that they have recorded this exotic behavior of electrons in a bulk crystal of bismuth-antimony without any external magnetic field being present. The work, while significant in a fundamental way, also could lead to advances in new kinds of fast quantum or "spintronic" computing devices, of potential use in future electronic technologies, the authors said.
"We had the right tool and the right set of ideas," said Zahid Hasan, an assistant professor of physics who led the research and propelled X-ray photons at the surface of the crystal to find the effect. The team used a high-energy, accelerator-based technique called "synchrotron photo-electron spectroscopy."
Read more about it here.
A team of scientists from Princeton University has found that one of the most intriguing phenomena in condensed-matter physics -- known as the quantum Hall effect -- can occur in nature in a way that no one has ever before seen.
Writing in the April 24 issue of Nature, the scientists report that they have recorded this exotic behavior of electrons in a bulk crystal of bismuth-antimony without any external magnetic field being present. The work, while significant in a fundamental way, also could lead to advances in new kinds of fast quantum or "spintronic" computing devices, of potential use in future electronic technologies, the authors said.
"We had the right tool and the right set of ideas," said Zahid Hasan, an assistant professor of physics who led the research and propelled X-ray photons at the surface of the crystal to find the effect. The team used a high-energy, accelerator-based technique called "synchrotron photo-electron spectroscopy."
Read more about it here.