- Reaction score
- 1,656
Researchers have built a quantum logic gate in an optical fiber, laying the foundation for a quantum computer network.
The promise of quantum computers is tantalizingly great: near-instantaneous problem solving, and perfectly secure data transmission. For the most part, however, small-scale demonstrations of quantum computation remain isolated in labs throughout the world. Now, Prem Kumar, a professor of electrical engineering and computer science at Northwestern University, has taken a step toward making quantum computing more practical. Kumar and his team have shown that they can build a quantum logic gate--a fundamental component of a quantum computer--within an optical fiber. The gate could be part of a circuit that relays information securely, over hundreds of kilometers of fiber, from one quantum computer to another. It could also be used on its own to find solutions to complicated mathematical problems.
A logic gate is a device that receives an input, performs a logic operation on it, and produces an output. The type of gate that Kumar created, called a controlled NOT gate, has a classical-computing analogue that flips a bit registering a "1" to "0," and vice versa. Quantum logic gates like Kumar's have been built before, but they worked with laser beams that passed through the air, not through fiber. The new gate lays the foundation for experiments that demonstrate the abilities of quantum computers in fiber, says Kumar. "The exciting thing here is that an application is within reach," he says. Within the next year, Kumar and his team plan to test the gate in a specific application: conducting a complex auction over a secure quantum network.
Read the entire article here.
The promise of quantum computers is tantalizingly great: near-instantaneous problem solving, and perfectly secure data transmission. For the most part, however, small-scale demonstrations of quantum computation remain isolated in labs throughout the world. Now, Prem Kumar, a professor of electrical engineering and computer science at Northwestern University, has taken a step toward making quantum computing more practical. Kumar and his team have shown that they can build a quantum logic gate--a fundamental component of a quantum computer--within an optical fiber. The gate could be part of a circuit that relays information securely, over hundreds of kilometers of fiber, from one quantum computer to another. It could also be used on its own to find solutions to complicated mathematical problems.
A logic gate is a device that receives an input, performs a logic operation on it, and produces an output. The type of gate that Kumar created, called a controlled NOT gate, has a classical-computing analogue that flips a bit registering a "1" to "0," and vice versa. Quantum logic gates like Kumar's have been built before, but they worked with laser beams that passed through the air, not through fiber. The new gate lays the foundation for experiments that demonstrate the abilities of quantum computers in fiber, says Kumar. "The exciting thing here is that an application is within reach," he says. Within the next year, Kumar and his team plan to test the gate in a specific application: conducting a complex auction over a secure quantum network.
Read the entire article here.