Technology Engineering Breakthrough Paves Way for Chip Components That Could Serve As Both RAM and ROM

tom_mai78101

The Helper Connoisseur / Ex-MineCraft Host
Staff member
Reaction score
1,703
Year after year, the explosive growth of computing power relies on manufacturers’ ability to fit more and more components into the same amount of space on a silicon chip. That progress, however, is now approaching the limits of the laws of physics, and new materials are being explored as potential replacements for the silicon semiconductors long at the heart of the computer industry.

New materials may also enable entirely new paradigms for individual chip components and their overall design. One long-promised advance is the ferroelectric field-effect transistor, or FE-FET. Such devices could switch states rapidly enough to perform computation, but also be able to hold those states without being powered, enabling them to function as long-term memory storage. Serving double duty as both RAM and ROM, FE-FET devices would make chips more space efficient and powerful.

The hurdle for making practical FE-FET devices has always been in manufacturing; the materials that best exhibit the necessary ferroelectric effect aren’t compatible with techniques for mass-producing silicon components due the high temperature requirements of the ferroelectric materials.

Now a team of researchers at the University of Pennsylvania School of Engineering and Applied Science has shown a potential way around this problem. In a pair of recent studies, they have demonstrated that scandium-doped aluminum nitride (AlScN), a material recently discovered to exhibit ferroelectricity, can be used to make FE-FET as well as diode-memristor-type memory devices with commercially viable properties.

The studies were led by Deep Jariwala, assistant professor in Electrical and Systems Engineering (ESE), and Xiwen Liu, a graduate student in his lab. They collaborated with fellow Penn Engineering faculty members Troy Olsson, also an assistant professor in ESE, and Eric Stach, professor in the Department of Materials Science and Engineering and Director of the Laboratory for Research on the Structure of Matter.

They published their findings in the journals Nano Letters and Applied Physics Letters.


Read more here. (SciTechDaily)
 
General chit-chat
Help Users
  • No one is chatting at the moment.

      The Helper Discord

      Members online

      No members online now.

      Affiliates

      Hive Workshop NUON Dome World Editor Tutorials

      Network Sponsors

      Apex Steel Pipe - Buys and sells Steel Pipe.
      Top